Combination of Solvent Displacement and Wet Ball Milling Techniques for Size Reduction of Celecoxib
نویسندگان
چکیده
Background: The objective of the present study was to investigate the combinative effect of ball milling and solvent displacement method on size reduction of Celecoxib particles. Celecoxib is a poorly water soluble cyclooxygenase 2 inhibitor which has a wide range of therapeutic applicability. Methods: Microparticles were developed via solvent displacement method followed by planetary ball milling. In order to obtain an optimized size and size distribution of Celecoxib microparticles various factors were evaluated; the role of solvent type, type and concentration of stabilizer, milling effect, and the effect of milling duration were the most important factors studied during the present investigation. Results: All the obtained formulations were in micron range that the smallest particles had the size of 1.76 μm and the formulation containing the largest particles was of 8.30 μm by volume mean diameter. Both solvent displacement and milling methods are common and potential approaches in order to formulate micron scaled particles. Conclusion: The combination of these two methods generates a synergistic effect which leads to smaller particle size and a narrow size distribution. Celecoxib microparticles have the potential to use as promising delivery systems to treat various disease and malignancies. A r t i c l e I n f o Article History: Received: 13 September 2015 Accepted: 12 December 2015 ePublished: 30 March 2016
منابع مشابه
اثر زمان آسیاکاری بر ساختار، اندازهی ذرات و ریخت شناسی مونتموریلونیت
In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1...
متن کاملEffects of ball-milling on PLGA polymer and its implication on lansoprazole-loaded nanoparticles
PLGA is a biodegradable polymer utilised widely in pharmaceutical research for the encapsulation of a wide range of drugs as nano particulate systems. This study investigates the impact of rotary ball milling on the physical properties of PLGA and its influence on nanoparticle formation prepared using the solvent displacement technique. By applying mechanical stress to the polymer and altering ...
متن کاملAn Investigation on Milling Method in Reduction of Magnesium Nano-Powder Particles Based on Sustaining Chemical Activity
Magnesium has been used in aviation industries, automobile manufacturing, electronics and medical engineering due to its unique properties thus far. The main problem in its utilization is the high reactivity of magnesium with oxygen and humidity, which both changes its properties. The surface charge and different density results in difficulties in dispersion stability of the powder in an ...
متن کاملDynamic modelling of hardness changes of aluminium nanostructure during mechanical ball milling process
In this research, the feasibility of using mathematical modelling in the ball milling process has been evaluated to verify the hardness changes of an aluminium nanostructure. Considering the model of normal force displacement (NFD), the radius of elastic-plastic and normal displacement of two balls were computed by applying analytical modelling and coding in MATLAB. Properties of balls and alum...
متن کاملGreen Multicomponent Synthesis of Benzodiazepines in the Presence of CuFe2O4 as an Efficient Magnetically Recyclable Nanocatalyst under Solvent-Free Ball-Milling Conditions at Room Temperature
In this work, an efficient and green procedure for the synthesis of various substituted 1,5-benzodiazepine derivatives via a one-pot three-component catalytic reaction has been described. The reaction was conducted between o-phenylenediamine, dimedone and aldehyde derivatives in the presence of CuFe2O4 nanoparticles as a magnetic heterogeneous nanocatalyst under ball-milling conditions at room ...
متن کامل